大数据上云那些事儿:上云工具之爬虫(Scrapy)数据

一、 Scrapy简单介绍

Scrapy是一个用 Python 写的 Crawler Framework ,简单轻巧,并且非常方便。

Scrapy 使用 Twisted 这个异步网络库来处理网络通讯,架构清晰,并且包含了各种中间件接口,可以灵活的完成各种需求。整体架构如下图所示:

绿线是数据流向,首先从初始 URL 开始,Scheduler 会将其交给 Downloader 进行下载,下载之后会交给 Spider 进行分析,Spider 分析出来的结果有两种:一种是需要进一步抓取的链接,例如之前分析的“下一页”的链接,这些东西会被传回 Scheduler ;另一种是需要保存的数据,它们则被送到 Item Pipeline 那里,那是对数据进行后期处理(详细分析、过滤、存储等)的地方。另外,在数据流动的通道里还可以安装各种中间件,进行必要的处理。

二、Scrapy环境安装

系统环境要求:

Linux

软件环境要求:

  1. 已安装:Python 2.7 ( 下载地址: https://www.python.org/ftp/python/2.7.13/Python-2.7.13.tgz )
  2. 已安装:pip (可参考: https://pip.pypa.io/en/stable/installing/ 进行安装

Scrapy安装

执行安装命令:

pip install Scrapy

Scrapy校验

执行命令:

scrapy

执行结果:

ODPS Python安装

执行安装命令:

pip install pyodps

ODPS Python校验

执行命令:

python -c "from odps import ODPS"

执行结果:无报错,即为安装成功

三、 创建Scrapy项目

在你想要创建Scrapy项目的目录下,执行:

scrapy startproject hr_scrapy_demo

看一下Scrapy创建项目后的目录结构:

hr_scrapy_demo /
    scrapy.cfg              # 全局配置文件
    hr_scrapy_demo /                # 项目下的Python模块,你可以从这里引用该Python模块
        __init__.py
        items.py            # 自定义的Items
        pipelines.py        # 自定义的Pipelines
        settings.py         # 自定义的项目级配置信息
        spiders/            # 自定义的spiders
            __init__.py

四、 创建OdpsPipelines

在hr_scrapy_demo/pipelines.py中,我们可以自定义我们的数据处理pipelines,以下是我之前编写好的一个OdpsPipeline,该Pipeline可以用于将我们采集到的item保存到ODPS中,但也有几点需要说明:

1. ODPS中的表必须已经提前创建好。

2. Spider中采集到的item必须包含该表的所有字段,且名字必须一致,否则会抛出异常。

3. 支持分区表和无分区表。

将下面代码替换掉你项目中的pipelines.py

# -*- coding: utf-8 -*-

# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html

from odps import ODPS
import logging

logger = logging.getLogger('OdpsPipeline')
class OdpsPipeline(object):
    collection_name = 'odps'
    records = []

    def __init__(self, odps_endpoint, odps_project,accessid,accesskey,odps_table,odps_partition=None,buffer=1000):
        self.odps_endpoint = odps_endpoint
        self.odps_project = odps_project
        self.accessid = accessid
        self.accesskey = accesskey
        self.odps_table = odps_table
        self.odps_partition = odps_partition
        self.buffer = buffer

    @classmethod
    def from_crawler(cls, crawler):
        return cls(
            odps_endpoint=crawler.settings.get('ODPS_ENDPOINT'),
            odps_project=crawler.settings.get('ODPS_PROJECT'),
            accessid=crawler.settings.get('ODPS_ACCESSID'),
            accesskey=crawler.settings.get('ODPS_ACCESSKEY'),
            odps_table=crawler.settings.get('ODPS_TABLE'),
            odps_partition=crawler.settings.get('ODPS_PARTITION'),
            buffer=crawler.settings.get('WRITE_BUFFER')
        )

    def open_spider(self, spider):
        self.odps = ODPS(self.accessid,self.accesskey,project=self.odps_project,endpoint=self.odps_endpoint)
        self.table = self.odps.get_table(self.odps_table)
        if(self.odps_partition is not None and self.odps_partition != ""):
            self.table.create_partition(self.odps_partition,if_not_exists=True)

    def close_spider(self, spider):
        self.write_to_odps()

    '''
        将数据写入odps
    '''
    def write_to_odps(self):
        if(len(self.records) is None or len(self.records) == 0):
            return
        if(self.odps_partition is None or self.odps_partition == ""):
            with self.table.open_writer() as writer:
                writer.write(self.records)
                logger.info("write to odps {0} records. ".format(len(self.records)))
                self.records = []
        else:
            with self.table.open_writer(partition=self.odps_partition) as writer:
                writer.write(self.records)
                logger.info("write to odps {0} records. ".format(len(self.records)))
                self.records = []

    def isPartition(self,name):
        for pt in self.table.schema.partitions:
            if(pt.name == name):
                return True
        return False

    def process_item(self, item, spider):
        cols = []
        for col in self.table.schema.columns:
            if(self.isPartition(col.name)):
                continue
            c = None
            for key in item.keys():
                if(col.name == key):
                    c = item[key]
                    break
            if(c is None):
                raise Exception("{0} column not found in item.".format(col.name))
            cols.append(c)
        self.records.append(self.table.new_record(cols))
        #logger.info("records={0} : buffer={1}".format(len(self.records),self.buffer))
        if( len(self.records) >= int(self.buffer)):
            self.write_to_odps()
        return item

注册Pipeline 到hr_scrapy_demo/setting.py,修改ITEM_PIPELINES的值为:

# Configure item pipelines
# See http://scrapy.readthedocs.org/en/latest/topics/item-pipeline.html
ITEM_PIPELINES = {
    'hr_scrapy_demo.pipelines.OdpsPipeline': 300,
}
#300代表Pipeline的优先级,可以同时存在多个pipeline,依据该数值从小到大依次执行pipeline

五、 配置ODPS 基本信息

hr_scrapy_demo/setting.py中,添加参数如下:

ODPS_PROJECT = 'your odps project name'
ODPS_ACCESSID = 'accessid'
ODPS_ACCESSKEY = 'accesskey'
ODPS_ENDPOINT = 'http://service.odps.aliyun.com/api'
#注:如果爬虫运行在ECS上,可将ODPS_ENDPOINT修改为内网地址:
#ODPS_ENDPOINT = 'http:// odps-ext.aliyun-inc.com/api'

六、创建自己的Spiders

Spider主要用于采集网站数据,并解析网站数据转换为相应的items,再交由Pipelines进行处理。针对每个需要采集的网站,我们都需要单独创建对应的Spider。

以下是一个Spider示例,以采集南方新闻网的要闻信息为依据。

# -*- coding:utf-8 -*-  
import scrapy
import logging

logger = logging.getLogger('NanfangSpider')

class NanfangSpider(scrapy.Spider):
    name = "nanfang"

    '''
        设置你要采集的其实网址,可以是多个.
        此处以南方新闻网-要闻-首页为例.
    '''
    start_urls = [
            'http://www.southcn.com/pc2016/yw/node_346416.htm'
            ]

    '''
        [ODPS配置信息]
        ODPS_TABLE:ODPS表名
        ODPS_PARTITION:ODPS表的分区值(可选)
        WRITE_BUFFER:写入缓存(默认1000条)
    '''
    custom_settings = {
        'ODPS_TABLE':'hr_scrapy_nanfang_news',
        #'ODPS_PARTITION':'pt=20170209',
        'WRITE_BUFFER':'1000'
    }

    '''
        ODPS Demo DDL:
        drop table if exists hr_scrapy_nanfang_news;
        create table hr_scrapy_nanfang_news
        (
            title string,
            source string,
            times string,
            url string,
            editor string,
            content string
        );
    '''

    '''
        对start_urls的url的解析方法,返回结果为item.
        关于具体解析API可参考:https://doc.scrapy.org/en/latest/intro/tutorial.html
    '''
    def parse(self, response):

        #查找网页中DIV元素,且其class=j-link,并对其进行遍历
        for quote in response.css("div.j-link"):
            #查找该DIV中的所有超链接,并获取其href
            href = quote.css("a::attr('href')").extract_first()

            #进入该href链接,此处跳转到方法:parse_details,对其返回HTML进行再次处理。
            yield scrapy.Request(response.urljoin(href),callback=self.parse_details)

        #查找下一页的连接,此处用xpath方式获取,因css语法简单,无法获取
        nexthref = response.xpath(u'//div[@id="displaypagenum"]//center/a[last()][text()="u4e0bu4e00u9875"]/@href').extract_first()

        #如找到下一页,则跳转到下一页,并继续由parse对返回HTML进行处理。
        if(nexthref is not None):
            yield scrapy.Request(response.urljoin(nexthref),callback=self.parse)

    '''
        新闻详情页处理方法
    '''
    def parse_details(self, response):
        #找到正文
        main_div = response.css("div.main")

        #因新闻详情也可能有分页,获取下一页的链接
        next_href = main_div.xpath(u'//div[@id="displaypagenum"]/center/a[last()][text()="u4e0bu4e00u9875"]/@href').extract_first()

        #获取正文内容,仅取DIV内所有

元素下的文本。 content = main_div.xpath('//div[@class="content"]//p//text()').extract() content = "n".join(content) if(next_href is None): #最后一页,则获取所有内容,返回item title = main_div.css('div.m-article h2::text').extract_first() source = main_div.css('div.meta span[id="pubtime_baidu"]::text').extract_first() times = main_div.css('div.meta span[id="source_baidu"]::text').extract_first() url = response.url editor = main_div.css('div.m-editor::text').extract_first() item = {} if('item' in response.meta): item = response.meta['item'] item['title'] = title item['source'] = source item['times'] = times item['url'] = url item['editor'] = editor if('content' in item): item['content'] += 'n'+content else: item['content'] = content yield item else: #非最后一页 ,则取出当前页content,并拼接,然后跳转到下一页 request = scrapy.Request(response.urljoin(next_href), callback=self.parse_details) item = {} if('item' in response.meta and 'content' in response.meta['item']): item = response.meta['item'] item['content'] += 'n'+content else: item['content'] = content request.meta['item'] = item yield request

七、 运行Scrapy

八、 验证爬取结果

待数据采集完成之后,登陆DATA IDE查看采集内容:

本文演示仅为一个简单的案例,实际生产还需考虑多线程处理,网站校验,分布式爬取等。

云栖团队博客稿源:云栖团队博客 (源链) | 来自的投递 | 阅读提示

本站遵循[CC BY-NC-SA 4.0]。如您有版权、意见投诉等问题,请通过eMail联系我们处理。
酷辣虫 » 综合编程 » 大数据上云那些事儿:上云工具之爬虫(Scrapy)数据

喜欢 (0)or分享给?

专业 x 专注 x 聚合 x 分享 CC BY-NC-SA 4.0

使用声明 | 英豪名录