优化案例 | CASE WHEN进行SQL改写优化

导读

今天给大家分享一个通过SQL改写而独辟蹊径的SQL优化案例

待优化场景

发现SLOW QUERY LOG中有下面这样一条记录:

...
# Query_time: 59.503827  Lock_time: 0.000198  Rows_sent: 641227  Rows_examined: 13442472  Rows_affected: 0
...
select uid,sum(power) powerup from t1 where 
date>='2017-03-31' and 
UNIX_TIMESTAMP(STR_TO_DATE(concat(date,' ',hour),'%Y-%m-%d %H'))>=1490965200 and 
UNIX_TIMESTAMP(STR_TO_DATE(concat(date,' ',hour),'%Y-%m-%d %H'))<1492174801  and 
aType in (1,6,9) group by uid;

实话说,看到这个SQL我也忍不住想骂人啊,究竟是哪个脑残的XX狗设计的?

竟然把日期时间中的 date 和 hour 给独立出来成两列,查询时再合并成一个新的条件,简直无力吐槽。

吐槽归吐槽,该干活还得干活,谁让咱是DBA呢,SQL优化是咱的拿手好戏不是嘛~

SQL优化之路

SQL优化思路

不厌其烦地再说一遍SQL优化思路。

想要优化一个SQL, 一般来说就是先看执行计划,观察是否尽可能用到索引,

同时要关注预计扫描的行数,

以及是否产生了临时表(Using temporary) 或者

是否需要进行排序(Using filesort),

想办法消除这些情况。

SQL性能瓶颈定位

毫无疑问,想要优化,先看表DDL以及执行计划:

CREATE TABLE `t1` (
  `id` bigint(20) unsigned NOT NULL AUTO_INCREMENT,
  `date` date NOT NULL DEFAULT '0000-00-00',
  `hour` char(2) NOT NULL DEFAULT '00',
  `kid` int(4) NOT NULL DEFAULT '0',
  `uid` int(11) NOT NULL DEFAULT '0',
  `aType` tinyint(2) NOT NULL DEFAULT '0',
  `src` tinyint(2) NOT NULL DEFAULT '1',
  `aid` int(11) NOT NULL DEFAULT '1',
  `acount` int(11) NOT NULL DEFAULT '1',
  `power` decimal(20,2) DEFAULT '0.00',
  PRIMARY KEY (`id`,`date`),
  UNIQUE KEY `did` (`date`,`hour`,`kid`,`uid`,`aType`,`src`,`aid`)
) ENGINE=InnoDB AUTO_INCREMENT=50486620 DEFAULT CHARSET=utf8mb4
/*!50500 PARTITION BY RANGE  COLUMNS(`date`)
(PARTITION p20170316 VALUES LESS THAN ('2017-03-17') ENGINE = InnoDB,
 PARTITION p20170317 VALUES LESS THAN ('2017-03-18') ENGINE = InnoDB
...

[email protected][myDB]> EXPLAIN select uid,sum(power) powerup from t1 where 
date>='2017-03-31' and 
UNIX_TIMESTAMP(STR_TO_DATE(concat(date,' ',hour),'%Y-%m-%d %H'))>=1490965200 and 
UNIX_TIMESTAMP(STR_TO_DATE(concat(date,' ',hour),'%Y-%m-%d %H'))<1492174801  and 
aType in (1,6,9) group by uidG
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: t1
   partitions: p20170324,p20170325,....all partition
         type: ALL
possible_keys: did
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 25005577
     filtered: 15.00
        Extra: Using where; Using temporary; Using filesort

明显的,这个SQL效率非常低, 全表扫描没有索引有临时表需要额外排序 ,什么倒霉催的全赶上了。

优化思考

这个SQL是想统计符合条件的power列总和,虽然 date 列已有索引,但WHERE子句中却对 date 列加了函数,而且还是 date 和 hour 两列的组合条件,那就无法用到这个索引了。

还好,有个聪明伶俐的妹子,突发起想(事实上这位妹子本来就擅长做SQL优化的~),可以用 CASE WHEN 方法来改造下SQL,改成像下面这样的:

select uid,sum(powerup+powerup1) from
(
   select uid,
          case when concat(date,' ',hour) >='2017-03-24 13:00' then power else '0' end as powerup,
          case when concat(date,' ',hour) ='2017-03-24' 
   and   date <'2017-03-25'
   and  aType in (1,6,9)
) a  group by uid;

是不是很有才,直接把这个没办法用到索引的条件给用CASE WHEN来改造了。看看新的SQL执行计划:

*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: t1
   partitions: p20170324
         type: range
possible_keys: did
          key: idx2_date_addRedType
      key_len: 4
          ref: NULL
         rows: 876375
     filtered: 30.00
        Extra: Using index condition; Using temporary; Using filesort

看看这个SQL的执行代价:

+----------------------------+---------+
| Variable_name              | Value   |
+----------------------------+---------+
| Handler_read_first         | 1       |
| Handler_read_key           | 1834590 |
| Handler_read_last          | 0       |
| Handler_read_next          | 1834589 |
| Handler_read_prev          | 0       |
| Handler_read_rnd           | 232276  |
| Handler_read_rnd_next      | 232277  |
+----------------------------+---------+

及其SLOW QUERY LOG记录的信息:

# Query_time: 6.381254  Lock_time: 0.000166  Rows_sent: 232276  Rows_examined: 2299141  Rows_affected: 0
# Bytes_sent: 4237347  Tmp_tables: 1  Tmp_disk_tables: 0  Tmp_table_sizes: 4187168
# InnoDB_trx_id: 0
# QC_Hit: No  Full_scan: No  Full_join: No  Tmp_table: Yes  Tmp_table_on_disk: No
# Filesort: Yes  Filesort_on_disk: No  Merge_passes: 0
#   InnoDB_IO_r_ops: 0  InnoDB_IO_r_bytes: 0  InnoDB_IO_r_wait: 0.000000
#   InnoDB_rec_lock_wait: 0.000000  InnoDB_queue_wait: 0.000000
#   InnoDB_pages_distinct: 9311

看起来还不是太理想啊,虽然不再扫描全表了,但毕竟还是 有临时表 额外排序 ,想办法消除后再对比看下。

有个变化不知道大家注意到没,新的SLOW QUERY LOG记录多了不少信息,这是因为用了Percona分支版本的插件才支持,这个功能确实不错,甚至还能记录Profiling的详细信息,强烈推荐。

我们新建个 uid 列上的索引,看看能除临时表及排序后的代价如何,看看这个的开销会不会更低。

[email protected][myDB]> ALTER TABLE t1 ADD INDEX idx_uid(uid);
[email protected][myDB]> EXPLAIN select uid,sum(powerup+powerup1) from
(
   select uid,
          case when concat(date,' ',hour) >='2017-03-24 13:00' then power else '0' end as powerup,
          case when concat(date,' ',hour) ='2017-03-24' 
   and   date <'2017-03-25'
   and  aType in (1,6,9)
) a  group by uidG

*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: if_date_hour_army_count
   partitions: p20170331,p20170401...
         type: index
possible_keys: did,idx_uid
          key: idx_uid
      key_len: 4
          ref: NULL
         rows: 12701520
     filtered: 15.00
        Extra: Using where

看看添加索引后SQL的执行代价:

+----------------------------+---------+
| Variable_name              | Value   |
+----------------------------+---------+
| Handler_read_first         | 1       |
| Handler_read_key           | 1       |
| Handler_read_last          | 0       |
| Handler_read_next          | 1834589 |
| Handler_read_prev          | 0       |
| Handler_read_rnd           | 0       |
| Handler_read_rnd_next      | 0       |
+----------------------------+---------+

及其SLOW QUERY LOG记录的信息:

# Query_time: 5.772286  Lock_time: 0.000330  Rows_sent: 232276  Rows_examined: 1834589  Rows_affected: 0
# Bytes_sent: 4215071  Tmp_tables: 0  Tmp_disk_tables: 0  Tmp_table_sizes: 0
# InnoDB_trx_id: 0
# QC_Hit: No  Full_scan: Yes  Full_join: No  Tmp_table: No  Tmp_table_on_disk: No
# Filesort: No  Filesort_on_disk: No  Merge_passes: 0
#   InnoDB_IO_r_ops: 0  InnoDB_IO_r_bytes: 0  InnoDB_IO_r_wait: 0.000000
#   InnoDB_rec_lock_wait: 0.000000  InnoDB_queue_wait: 0.000000
#   InnoDB_pages_distinct: 11470

我们注意到,虽然加了 uid 列索引后的 SQL扫描的data page更多了,但执行效率其实是更高的因为消除了 临时表 和 额外排序 ,这从 Handler read % 的结果中也能看出来,很显然它的 顺序I/O更多,随机I/O更少所以虽然需要扫描的 data page 更多,实际上效率却是更快的

后记

再想想这个SQL还有优化空间吗,显然是有的,那就是把数据表重新设计,将 date 和 hour 列整合到一起,这样就不用费劲的拼凑条件并且也能用到索引了。

最后安利下,知数堂培训马上推出 SQL开发优化 课程,由业界资深SQL优化专家郑老师授课。

该课程关键字:MySQL、Oracle、SQL调优、EXPLAIN、DBMS_XPLAN、OPTIMIZER TRACE、SQL改写、NESTED LOOP、OUTER JOIN、HASH JOIN、ERD图、HINT、SORT MERGE、Materialized View、ROWNUM。

学完本课程,无论您是DBA工程师、运维工程师,还是开发工程师,抑或系统架构师、技术主管,都将大幅增强您的职场实力,加薪50%轻轻松松。此外,我们也会将优秀的学员直接推向各大一线互联网公司。

本周四晚上郑老师还会再进行一次公开课分享,讲讲GROUP BY的用法及堵门优化技巧。

有兴趣的同学可以扫码加入知数堂QQ群 579036588 关注课程进展。

稿源:MySQL中文网 (源链) | 关于 | 阅读提示

本站遵循[CC BY-NC-SA 4.0]。如您有版权、意见投诉等问题,请通过eMail联系我们处理。
酷辣虫 » 后端存储 » 优化案例 | CASE WHEN进行SQL改写优化

喜欢 (0)or分享给?

专业 x 专注 x 聚合 x 分享 CC BY-NC-SA 4.0

使用声明 | 英豪名录